Journal of Organometallic Chemistry, 142 (1977) C9-C11 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

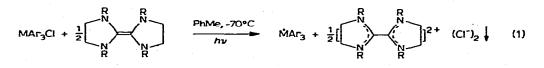
PERSISTENT TRIARYLGERMYL RADICALS $GeAr_3$ (Ar = 2,6-Me₂C₆H₃ OR 2,4,6-Me₃C₆H₂): SYNTHESIS, ESR STUDIES, AND COMPARISONS WITH Si AND Sn ANALOGUES*

MICHAEL J.S. GYNANE, MICHAEL F. LAPPERT *

School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ (Great Britain) PIERRE RIVIERE and MONIQUE RIVIERE-BAUDET

Laboratoire de Chimie des Organominéraux, Université Paul Sabatier, 31077 Toulouse-Cédex (France)

(Received September 30th, 1977)


Summary

Persistent $(t_{1/2} > 24 \text{ h}$ in PhMe at 20°C) triarylgermyl radicals GeAr₃ (Ar = 2,6-Me₂C₆H₃ or 2,4,6-Me₃C₆H₂) have been obtained from GeAr₃Cl and an electron-rich olefin [RNCH₂CH₂N(R)C=]₂ (R = Me or Et) under UV irradiation in toluene at -70° C; the ESR spectra show coincidental equivalence of all proton couplings due to twisting of the aromatic rings into a propeller arrangement about the germanium; other syntheses are described, corresponding silicon and tin systems compared, and data provided on new compounds MAr₃X (M = Si, Ge, or Sn; X = H or Cl).

Recently there has been some interest in persistent metal-centred radicals $\dot{M}X_3$ of the Main Group IV elements Si, Ge, and Sn [1]. Species with half-lives > ca. 3 months in hydrocarbon solvents have been obtained ($\dot{M}X_3$ (M = Ge or Sn): X = CH(SiMe₃)₂ [2], N(SiMe₃)₂ or N(CMe₃)(SiMe₃) [2]; $\dot{M}(NR_2)_3$ (R = GeMe₃ and M = Ge or Sn, or R = GeEt₃ and M = Sn) [3]), whereas others although still "persistent" are significantly shorter-lived ($\dot{Si}[CH(SiMe_3)_2]_3$ [2] and $\dot{Sn}(CH_2-$ CMe₂Ph)₃ [4]). We now report preliminary findings on the triarylgermyl radicals; while this work was being prepared for publication the radical Ge(C₆H₂Me₃-2,4,6)₃ was obtained by a different procedure [5], but we observed superior resolution of its ESR spectrum, including ⁷³Ge satellites.

The principal method used for generating the metal-centred radical was that of eq. 1 (R = Me or Et) (cf. ref. 6). The following systems were examined: Ar = 2,4,6-Me₃C₆H₂ with M = Si, Ge, or Sn; and for M = Ge, Ar = 3,4-Me₂C₆H₃ or

"No reprints available.

2,6-Me₂C₆H₃. Only the mesityl- or 2,6-xylyl-germanium radicals MX_3 were detected by ESR spectroscopy (Table 1), although in every case except with Si(C₆H₂Me₃-2,4,6)₃Cl a reaction was observed. Thus during photolysis (250 W medium pressure Hg lamp) in the cavity of an ESR spectrometer, each solution remained colourless and (except for SiAr₃Cl) a white solid (probably the salt of eq. 1) was precipitated.

TABLE 1

ESR PARAMETERS AND HALF-LIVES * ERSISTENT TRIARYLGERMYL RADICALS^a

Ar in ĜeAr,	2	a(¹ H) (mT)	a(⁷³ Ge) (mT)	t3/2 (h)	
2.4.6-Me3C.H.	2.0084	0.069	6.84	> 24	
2.6-Me ₂ C ₆ H			6.69	> 24	

^a. Data are quoted for solutions in PhMe at 20°C, generated according to eq. 1.

The mesityl- and 2,6-xylyl-germyl radicals have long half-lives under ambient conditions (Table 1), but not comparable to $Ge[CH(SiMe_3)_2]_3$; the corresponding triaryltin radicals are expected to be less persistent as the larger tin atom can tolerate bulkier substituents and formation of the diamagnetic dimers Sn_2Ar_6 may have occurred.

The ESR spectrum of $Ge(C_6H_2Me_3-2,4,6)_3$ shows a central eighteen line signal due to ¹H coupling, a(H), with satellites due to coupling with ⁷³Ge (I = 9/2, 7.6% abundance). The experimental spectrum is identical with a simulated one assuming that a(H) for meta-H and the 2-, 4-, or 6-Me groups are equivalent (i.e., coupling with 33 protons); thus the eighteen lines correspond in relative intensity to the central eighteen lines of the binomial expansion of 34. Similarly, the eighteen line central signal of $Ge(C_6H_3Me_2-2,6)_3$ (Fig. 1) has relative intensities corresponding to the central eighteen of the binomial expansion of 28, i.e., all H's have identical coupling constants. The coincidence of CH_3 and aromatic CHproton couplings contrasts with the situation in $GePh_3$ (where o-, m-, and p-a(H)'s are 0.093, 0.046, and 0.093 mT, respectively [7]), but may be explained by the twisting of the aromatic rings for steric reasons; it has been shown [8] that such twisting causes a(m-H) to rise and a(o-H) and a(p-H) to fall.

Other methods which were used for the generation of $Ge(C_6H_2Me_3-2,4,6)_3$ were by UV irradiation of (i) $GeAr_3H/4t-Bu_2O_2$ in n-C₆H₁₄ at 0°C [5] (this gave a much weaker signal); and (ii) $GeAr_3H/(CH_2)_5C=0$ in toluene at 0°C (quite a good spectrum). Similar irradiation of $GeAr_3H$ with the nitrone PhCH=NCt-Bu)O in PhMe at 20°C gave the nitroxide $GeAr_3CH(Ph)N(t-Bu)O$ presumably via $GeAr_3$ and its spin-trapping by the nitrone [9]. However, the germylene $(GeAr_2)_n$ [10] in toluene did not (hv) give $GeAr_3$, in contrast to $Ge[CH(SiMe_3)_2]_2$ [2] or $(GePhCl)_n$ [9] which gave GeR_3 (R = $(Me_3Si)_2CH$) or $GePhCl_2$ (identified by spin-trapping).

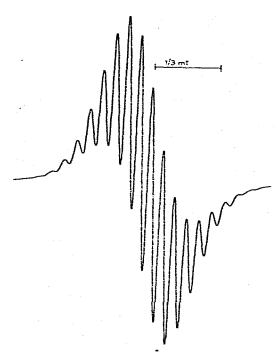


Fig. 1. The ESR spectrum of $\tilde{G}eAr_3$ (Ar = 2.6-Me₄C₆H₃) in toluene at 20°C. ⁷³Ge satellites not shown.

The tetravalent Group IV metal precursors for these experiments were prepared as follows: (a) SiAr₃H from SiCl₃H and LiAr; (b) SiAr₃Cl from SiAr₃H and N-chlorosuccinimide in THF; (c) GeAr₃H from GeAr₃Cl and LiAlH₄; (d) GeAr₃Cl from GeCl₄ and ArMgBr, or GeAr₃H with CCl₄ or N-chlorosuccinimide; and (e) SnAr₃Cl from SnCl₄ and successively an excess of ArMgBr (to yield SnAr₄) and SnCl₄. The new compounds include $M(C_6H_3Me_2-2,6)_3Cl$ (M = Ge, m.p. 143°C; M = Sn, m.p. 165°C) and Si(C₆H₂-2,4,6)₃Cl, b.p. 190-195°C/10⁻² mmHg.

Acknowledgements

We thank Dr. A. Hudson for useful discussions.

References

- 1 M.F. Lappert and P.W. Lednor, Advan. Organometal. Chem., 14 (1976) 345.
- 2 A. Hudson, M.F. Lappert and P.W. Lednor, J. Chem. Soc. Dalton Trans., (1976) 2369.
- 3 M.J.S. Gynane, D.H. Harris, M.F. Lappert, P.P. Power, P. Rivière and M. Rivière-Baudet, J. Chem. Soc. Dalton Trans., in press.
- H.U. Buschhaus, M. Lehnig and W.P. Neumann, J. Chem. Soc. Chem. Commun., (1977) 129.
- 5 H. Sakurai, K. Mochida and M. Kira, J. Organometal. Chem., 124 (1977) 235.
- 6 M.J.S. Gynane and M.F. Lappert, J. Organometal. Chem., 114 (1976) C4.
- 7 H. Sakumi, K. Mochida and M. Kira, J. Amer. Chem. Soc., 97 (1975) 929.
- 8 A. Hudson, H.J. Kent, R.A. Jackson and R.F. Treweek, J. Chem. Soc, Faraday II, 70 (1974) 892. 9 P. Rivière, S. Richelme, M. Rivière-Baudet, J. Satgé, M.J.S. Gynane and M.F. Lappert, J. Chem. Research, in press.

10 P. Rivière, unpublished work.

-